More Exploration of Factoring and Division (Day 11, Polynomials)

In this problem set, we will investigate the connections between graphing, factoring, long division, and equation solving. A lot of these problems involve ideas from earlier in this unit, so don't hesitate to look back at your old handouts while you are working on this.

- 1. Consider the polynomial $x^3 6x^2 + 3x + 10$.
 - **a.** Does the polynomial $x^3 6x^2 + 3x + 10$ factor? Factor it, if you can.

b. None of the factoring methods that we have learned thus far are helpful in factoring $x^3 - 6x^2 + 3x + 10$. We need to use a different method. Graph $y_1 = x^3 - 6x^2 + 3x + 10$ on your calculator. Sketch the graph below.

c. Can we determine how $x^3 - 6x^2 + 3x + 10$ factors simply from its graph? *Hint:* Think about the x-intercepts.

Solution

The coordinates of the x-intercepts were (-1,0), (2,0), and (5,0). Therefore, our polynomial has the following factors: x + 1, x - 2, and x - 5. Hence, $x^3 - 6x^2 + 3x + 10 = (x + 1)(x - 2)(x - 5)$.

- 2. Consider the polynomial $-2x^3 4x^2 + 38x + 40$.
 - **a.** Use your calculator to graph $y_1 = -2x^3 4x^2 + 38x + 40$. Then factor it.

b. Explain why (x+5)(x+1)(x-4) is **not** the correct factoring. What **is** the correct factoring?

Answer:
$$-2(x+5)(x+1)(x-4)$$

- 3. Consider the polynomial $x^3 5x^2 + 9x 9$.
 - **a.** Can we use the method from the first two problems to factor $x^3 5x^2 + 9x 9$? Explain. Factor it if you can.

b. If we graph $y_1 = x^3 - 5x^2 + 9x - 9$, we only get one x-intercept. Can you identify one of the factors of $x^3 - 5x^2 + 9x - 9$? Is there a way we could find the other factor? *Note:* If you want a hint, skip ahead to part **c**. But try without the hint first.

c. The graph of $y_1 = x^3 - 5x^2 + 9x - 9$ has an x-intercept at the point (3,0). Therefore, x - 3 is a factor of $x^3 - 5x^2 + 9x - 9$. This means that

$$x^{3} - 5x^{2} + 9x - 9 = (x - 3)$$
(some other factor)

Find the other factor. *Hint:* Long division.

d. To find the other factor, we do the long division $\frac{x^3 - 5x^2 + 9x - 9}{x - 3}$. Thus, $x^3 - 5x^2 + 9x - 9 = (x - 3)(x^2 - 2x + 3)$.

Optional Challenge Problem: Can we factor this polynomial any further? Why or why not? *Hint:* Think about the graph.

4. Factor the polynomial $x^3 - x^2 - 12x + 32$. Use the method that you developed in the last problem. Your final answer should be the product of a linear factor and a quadratic factor. *Hint:* Start by graphing on your calculator. Include the sketch of the graph as part of your solution.

Answer: $(x + 4)(x^2 - 5x + 8)$

- 5. Consider the polynomial $x^3 6x^2 3x + 18$.
 - **a.** Graph $y_1 = x^3 6x^2 3x + 18$ on your calculator. Sketch the graph below.

- **b.** This time, there are three x-intercepts. Which one of these x-intercepts should we use to set up our long division? Why?
- c. The "best" x-intercept is (6,0). (The other two x-intercepts are weird decimals.) Now use the method from the last two problems to factor $x^3 6x^2 3x + 18$. Your answer should be the product of a linear and a quadratic factor.

d. Is there another, faster way that we could have factored $x^3 - 6x^2 - 3x + 18$? *Hint:* Factoring by grouping.

e. In parts c and d, you should have found $x^3 - 6x^2 - 3x + 18 = (x - 6)(x^2 - 3)$. Now solve the equation $x^3 - 6x^2 - 3x + 18 = 0$. *Hint:* You already know the factoring.

f. The equation $x^3 - 6x^2 - 3x + 18 = 0$ had three solutions: 6 and $\pm \sqrt{3}$. What are the exact coordinates for each of the three x-intercepts on the graph $y_1 = x^3 - 6x^2 - 3x + 18$?

g. The coordinates for the three x-intercepts are (6,0), $(\sqrt{3},0)$, and $(-\sqrt{3},0)$. Can we factor the polynomial $x^3 - 6x^2 - 3x + 18$ into three linear factors? Do it if you can.

Answer: g. $x^3 - 6x^2 - 3x + 18 = (x - 6)(x - \sqrt{3})(x + \sqrt{3})$

- **6.** Our goal in this problem is to factor the polynomial $x^3 3x^2 5x + 14$.
 - **a.** Factor $x^3 3x^2 5x + 14$. *Hint:* Which x-intercept is best to use?

b. You should have found that $x^3 - 3x^2 - 5x + 14 = (x - 2)(x^2 - x - 7)$. Now solve the equation $x^3 - 3x^2 - 5x + 14 = 0$. *Hint:* You already have the factoring for $x^3 - 3x^2 - 5x + 14$.

- **c.** The equation $x^3 3x^2 5x + 14 = 0$ had three solutions: 2 and $\frac{1}{2} \pm \frac{\sqrt{29}}{2}$. (In part **d**, use the quadratic formula to find $\frac{1}{2} \pm \frac{\sqrt{29}}{2}$.) What are the exact coordinates for each of the three x-intercepts on the graph $y_1 = x^3 3x^2 5x + 14$?
- **d.** The coordinates for the three x-intercepts are (2,0), $(\frac{1}{2} + \frac{\sqrt{29}}{2}, 0)$, and $(\frac{1}{2} \frac{\sqrt{29}}{2}, 0)$. Now factor the polynomial $y_1 = x^3 3x^2 5x + 14$ into three linear factors.

Answer: d. $x^3 - 3x^2 - 5x + 14 = (x - 2)\left(x - (\frac{1}{2} + \frac{\sqrt{29}}{2})\right)\left(x - (\frac{1}{2} - \frac{\sqrt{29}}{2})\right)$

- 7. In this problem, we will explore polynomials that are a difference of two cubes.
 - **a.** Suppose you were about to graph $y = x^3 8$ on your calculator. Before you graph, can you determine one of the x-intercepts? Explain.
 - **b.** We know that (2,0) is an x-intercept because $2^3 8 = 0$. What must be a factor of $x^3 8$?
 - c. Since (2,0) is an x-intercept, we can conclude that x-2 is a factor of x^3-8 . Do long division to find the other factor.

d. You should have found that $x^3 - 8 = (x - 2)(x^2 + 2x + 4)$. Note that this matches the pattern for factoring a difference of cubes that we developed in a previous problem set. Now factor $x^3 - 27$. *Note:* You may do this either by using the pattern or by doing a long division.

- **8.** In this problem, we will explore polynomials that are the sum of two cubes.
 - **a.** Suppose you were about to graph $y = x^3 + 125$ on your calculator. Before you graph, can you determine one of the x-intercepts? Explain.
 - **b.** We know that (-5,0) is an x-intercept because $(-5)^3 + 125 = 0$. What must be a factor of $x^3 + 125$?
 - Since (-5,0) is an x-intercept, we can conclude that x + 5 is a factor of $x^3 + 125$. Do long division to find the other factor.

d. You should have found that $x^3 + 125 = (x + 5)(x^2 - 5x + 25)$. Note that this matches the pattern for factoring a sum of cubes that we developed in a previous problem set. Now factor $x^3 + 27$. *Note:* You may do this either by using the pattern or by doing a long division.