Α	lae	bra	2/F	re-	Cal	cu	lus
•	.9~	, N. C			Ou.	O G	u

Harder Problems (Day 5, Rational Expressions)

Name____

In this problem set, we will further explore the connections between polynomials and rational expressions.

- 1. Consider the following rational expression: $\frac{x^3 x^2 + 3x 10}{x^3 + 4x^2 + 8x + 15}$.
 - **a.** Simplify the expression. *Note:* There are hints in the later part of the problem. But try it on your own first!

b. Can you factor $x^3 - x^2 + 3x - 10$? *Hint:* Start by graphing it on your calculator.

c. You should have found that x-2 was a factor of $x^3 - x^2 + 3x - 10$. What is the other factor of $x^3 - x^2 + 3x - 10$? *Hint:* Long division.

d. You should have found that $x^3 - x^2 + 3x - 10 = (x - 2)(x^2 + x + 5)$. Now factor $x^3 + 4x^2 + 8x + 15$.

e. Simplify $\frac{x^3 - x^2 + 3x - 10}{x^3 + 4x^2 + 8x + 15}$.

Answer $\frac{x^3 - x^2 + 3x - 10}{x^3 + 4x^2 + 8x + 15} = \frac{(x - 2)(x^2 + x + 5)}{(x + 3)(x^2 + x + 5)} = \frac{x - 2}{x + 3}$

2. Simplify the following rational expression: $\frac{x^3 + 3x^2 - 3x + 35}{x^3 - 3x^2 + 9x - 7}$.

Answer
$$\frac{x^3 + 3x^2 - 3x + 35}{x^3 - 3x^2 + 9x - 7} = \frac{(x+5)(x^2 - 2x + 7)}{(x-1)(x^2 - 2x + 7)} = \frac{x+5}{x-1}$$

- 3. Suppose f(x) is a cubic polynomial such that f(1) = f(-2) = f(-3) = 0 and f(2) = 40.
 - **a.** Find the formula for f(x). Leave your answer in factored form.

b. You should have found that f(x) = 2(x-1)(x+2)(x+3). Suppose g(x) is another cubic polynomial such that g(0) = g(-2) = g(-3) = 0 and g(1) = 36. Find the formula for g(x).

c. You should have found that g(x) = 3x(x+2)(x+3). Now simplify the rational expression $\frac{f(x)}{g(x)}$.

Answer
$$\frac{f(x)}{g(x)} = \frac{2(x-1)(x+2)(x+3)}{3x(x+2)(x+3)} = \frac{2x-2}{3x}$$

4. Suppose f(x) is a cubic polynomial such that f(-2) = f(2) = f(5) = 0 and f(0) = 10. Suppose further that g(x) is a quadratic polynomial such that g(-2) = g(5) = 0 and g(1) = -8. Simplify the rational expression $\frac{f(x)}{g(x)}$.

Answer
$$\frac{f(x)}{g(x)} = \frac{\frac{1}{2}(x+2)(x-2)(x-5)}{\frac{2}{3}(x+2)(x-5)} = \frac{\frac{1}{2}(x-2)}{\frac{2}{3}} = \frac{3(x-2)}{4} = \frac{3x-6}{4}$$

- 5. Consider the rational expression $\frac{x^3 3x^2 + 5x 15}{x^2 + x 12}$.
 - **a.** Perform the long division $\frac{x^3 3x^2 + 5x 15}{x^2 + x 12}$.

b. You should have found that $\frac{x^3 - 3x^2 + 5x - 15}{x^2 + x - 12} = x - 4 + \frac{21x - 63}{x^2 + x - 12}$. Simplify the rational expression $\frac{x^3 - 3x^2 + 5x - 15}{x^2 + x - 12}$ by factoring the numerator and the denominator.

c. You should have found that $\frac{x^3 - 3x^2 + 5x - 15}{x^2 + x - 12} = \frac{x^2 + 5}{x + 4}$. Now perform the long division $\frac{x^2 + 5}{x + 4}$.

d. You should have found that $\frac{x^2 + 5}{x + 4} = x - 4 + \frac{21}{x + 4}$. Does this match the answer you got in part **a**? Explain.