In this problem set, we will explore how to simplify fractions with variables. As you do this assignment, think back to the knowledge of fractions that you already have.

- 1. Simplify each of the following fractions
 - **a.** $\frac{4}{14}$

b. $\frac{24}{21}$

- **c.** $\frac{6}{18}$
- 2. You should have found that $\frac{4}{14} = \frac{2}{7}$ because a common factor cancelled out. Notice that what we have really done is to factor the top and bottom of the fraction and then cancel the common factors: $\frac{4}{14} = \frac{2 \cdot 2}{2 \cdot 7} = \frac{2}{7}$. We can do the same thing when fractions involve variables.
 - **a.** Simplify the fraction $\frac{15x}{20x^2}$.
 - **b.** You should have found that $\frac{15x}{20x^2} = \frac{5x \cdot 3}{5x \cdot 4x} = \frac{3}{4x}$. Now simplify $\frac{x^2 + 7x + 12}{x^2 + 8x + 15}$.

c. You should have found that $\frac{x^2 + 7x + 12}{x^2 + 8x + 15} = \frac{(x+3)(x+4)}{(x+3)(x+5)} = \frac{x+4}{x+5}$. Can $\frac{x+4}{x+5}$ be simplified to $\frac{4}{5}$ by cancelling the x on the top with the x on the bottom? Explain.

d. We **cannot** simplify $\frac{x+4}{x+5}$ to $\frac{4}{5}$ because the x is **not a factor** of either the top or the bottom. Now simplify $\frac{x^2-6x-7}{x^2+10x+9}$.

3. A fraction in which both the numerator and the denominator are polynomials is called a *rational expression*. Simplify each of the following rational expression. *Note:* Answers are provided at the end of this problem.

a.
$$\frac{6x^2}{7x^3}$$

b.
$$\frac{20x^4}{10x^2}$$

c.
$$\frac{x^2 + 5x}{x^2 + 10x}$$

d.
$$\frac{2x^2 - 14x}{3x - 21}$$

$$e. \quad \frac{x^2 + 4x - 32}{x^2 - 8x + 16}$$

$$\mathbf{g.} \quad \frac{2x^2 + x - 3}{2x^2 + 7x + 6}$$

h.
$$\frac{2x^2 + 12x + 16}{2x^2 - x - 10}$$

$$i. \quad \frac{x^4 + 2x^2 - 35}{x^3 + 2x^2 - 5x - 10}$$

$$\mathbf{j.} \quad \frac{2x^4 - 6x^3 + 8x^2 - 24x}{2x^3 - 4x^2 - 6x}$$

Answers a.
$$\frac{6}{7x}$$
 b. $2x^2$ c. $\frac{x+5}{x+10}$ d. $\frac{2x}{3}$ e. $\frac{x+8}{x-4}$ f. $\frac{x-3}{x+7}$ g. $\frac{x-1}{x+2}$ h. $\frac{2x+8}{2x-5}$ i. $\frac{x^2+7}{x+2}$ j. $\frac{x^2+4}{x+1}$

- **4.** In this problem, we will investigate how to multiply and divide rational expressions.
 - **a.** Multiply $\frac{3}{4} \cdot \frac{7}{2}$
 - **b.** You should have found that $\frac{3}{4} \cdot \frac{7}{2} = \frac{21}{8}$. Now multiply $\frac{3x}{5} \cdot \frac{2x}{x+6}$.

c. You should have found that $\frac{3x}{5} \cdot \frac{2x}{x+6} = \frac{6x^2}{5x+30}$. Now multiply $\frac{28}{45} \cdot \frac{18}{21}$.

d. You should have found that $\frac{28}{45} \cdot \frac{18}{21} = \frac{4 \cdot 7}{5 \cdot 9} \cdot \frac{2 \cdot 9}{3 \cdot 7} = \frac{4}{5} \cdot \frac{2}{3} = \frac{8}{15}$. Notice that it is sometimes easier to factor and cancel before you multiply. Now multiply $\frac{x^2 + 10x + 16}{x^2 - 10x + 9} \cdot \frac{3x - 27}{x^2 + 8x}$.

5. In the last problem, you should have found that
$$\frac{x^2 + 10x + 16}{x^2 - 10x + 9} \cdot \frac{3x - 27}{x^2 + 8x} = \frac{3x + 6}{x^2 - x}$$
. Now do each of the following multiplications. *Hint:* Some problems are easier if you factor first.

a.
$$\frac{3}{7x^2} \cdot \frac{5}{6}$$

b.
$$\frac{4x}{15} \cdot \frac{5}{2x}$$

$$\mathbf{c.} \quad \frac{x-4}{x+7} \cdot \frac{2x}{5}$$

d.
$$\frac{x+8}{x-6} \cdot \frac{x-8}{x+10}$$

e.
$$\frac{x^2-9}{x^2-4} \cdot \frac{x^2+9x+14}{x^2-7x+12}$$

f.
$$\frac{x^4 + x^2 - 56}{x - 9} \cdot \frac{x + 3}{x^2 + 8}$$

Answers a.
$$\frac{5}{14x^2}$$
 b. $\frac{2}{3}$ c. $\frac{2x^2 - 8x}{5x + 35}$ d. $\frac{x^2 - 64}{x^2 + 4x - 60}$ e. $\frac{x^2 + 10x + 21}{x^2 - 6x + 8}$

b.
$$\frac{2}{3}$$
 c. $\frac{2x^2-8}{5x+3^4}$

d.
$$\frac{x^2 - 64}{x^2 + 4x - 60}$$

e.
$$\frac{x^2 + 10x + 21}{x^2 + 6x + 8}$$

f.
$$\frac{x^3 + 3x^2 - 7x - 21}{x - 9}$$

6. More problems! Simplify.

a.
$$\frac{2x+4}{6}$$

b.
$$\frac{x^2 - 1}{2x - 2}$$

c.
$$\frac{3x-3}{x^2+4x-5}$$

$$\mathbf{d.} \ \frac{x^2 + 5x}{x^2}$$

e.
$$\frac{x^2 + 5x}{x^2 + 5}$$

$$f. \ \frac{x^4 - x^2}{x^3 - 5x^2 - 6x}$$

$$\mathbf{g.} \ \frac{2x^2 - 8}{x^3 - 2x^2 - x + 2}$$

h.
$$\frac{2x^2y}{3y^2} \cdot \frac{9x^3y^2}{18x}$$

$$\mathbf{i.} \ \frac{6a^2b^2}{9b^4} \cdot 6ab$$

j.
$$\frac{x}{2} \cdot \frac{x^2 - 4}{x^2 - x - 6} \cdot \frac{x - 3}{x + 7}$$

1.
$$\frac{4x^2 - 8x - 21}{4x^2 + 11x - 3} \cdot \frac{4x^2 - 9x + 2}{2x^2 - 9x + 7}$$

Answers a. $\frac{x+2}{3}$ b. $\frac{x+1}{2}$ c. $\frac{3}{x+5}$ d. $\frac{x+5}{x}$ e. $\frac{x^2+5x}{x^2+5}$ (already simplified)

f.
$$\frac{x^2 - x}{x - 6}$$
 g. $\frac{2x + 4}{x^2 - 1}$ h. $\frac{x^4 y}{3}$ i. $\frac{4a^3}{b}$ j. $\frac{x^2 - 2x}{2x + 14}$ l. $\frac{2x^2 - x - 6}{x^2 + 2x - 3}$

7. Determine whether each of the following statements is true or false

a.
$$\frac{x^3 + 4}{x^3 + 7} = \frac{4}{7}$$

b.
$$\frac{3x+2}{6x+1} = \frac{x+2}{2x+1}$$

$$\mathbf{c.} \quad \frac{x^{12}}{x^8} = \frac{x^3}{x^2}$$

d.
$$\frac{2}{3} \left(\frac{x-4}{x+1} \right) = \frac{2(x-4)}{3(x+1)}$$

Answers a. False b. False c. False d. True