Algebra	2/Pre-	Calculus
----------------	--------	----------

More Problems (Day 6, Pascal's Triangle)

Name_____

The goal of this handout is to explore the connections between Pascal's Triangle and certain probability problems.

- 1. Suppose a pizzeria offers six toppings: Pepperoni (P), Sausage (S), Onions (O), Mushrooms (M), Chicken (C), and Broccoli (B).
 - **a.** How many 2 topping pizzas are possible?

b. How many 3 topping pizzas are possible?

c. How many 1 topping pizzas are possible?

d. How many 0 topping pizzas are possible? *Hint:* What is a "0 topping pizza?"

e. When we defined factorials, we said that 0! = 1. How does this relate to the question in part **d**?

f. How many total pizzas does this pizzeria offer? *Hint:* There are two possibilities for each topping: On the pizza or not on the pizza.

g. Consider the following identity:

$$\begin{pmatrix} 6 \\ 0 \end{pmatrix} + \begin{pmatrix} 6 \\ 1 \end{pmatrix} + \begin{pmatrix} 6 \\ 2 \end{pmatrix} + \begin{pmatrix} 6 \\ 3 \end{pmatrix} + \begin{pmatrix} 6 \\ 4 \end{pmatrix} + \begin{pmatrix} 6 \\ 5 \end{pmatrix} + \begin{pmatrix} 6 \\ 6 \end{pmatrix} = 2^6$$

Explain this relationship in the context of the pizzeria.

h. Find the following sum: 1+7+21+35+35+21+7+1. How does the answer relate to the last problem?

i. How many 2 topping pizzas are possible? How many 4 topping pizzas are possible?

j. You should have found that the number of 2 topping pizzas was equal to the number of 4 topping pizzas explain why this makes sense.

Answers a.
$$\begin{pmatrix} 6 \\ 2 \end{pmatrix} = 15$$
 b. $\begin{pmatrix} 6 \\ 3 \end{pmatrix} = 20$ c. $\begin{pmatrix} 6 \\ 1 \end{pmatrix} = 6$

d. $\begin{pmatrix} 6 \\ 0 \end{pmatrix}$ = 1 There's only one 0 topping pizza: plain cheese.

e. We need to define 0! = 1 so that $\begin{pmatrix} 6 \\ 0 \end{pmatrix} = 1$. Remember, $\begin{pmatrix} 6 \\ 0 \end{pmatrix} = \frac{6!}{0!(6-0)!}$

f. $2^6 = 64$ g. The total number of pizzas is the number of 0 topping pizzas plus the number of 1 topping pizzas plus the number of 2 topping pizzas, etc.

h. $1+7+21+35+35+21+7+1=2^7$ The numbers on the 7th row of Pascal's Triangle sum to 2^7 . i. 15 for both j. Choosing 2 toppings to be on the pizza is the same as choosing 2 topping to be off the pizza.

2. Evaluate the sum:
$$\sum_{k=0}^{8} \begin{pmatrix} 8 \\ k \end{pmatrix}$$

Answer 256

3. Find the value(s) of m and n that satisfy each equation.

$$\mathbf{a.} \quad \left(\begin{array}{c} 10 \\ 5 \end{array} \right) = \left(\begin{array}{c} 9 \\ 5 \end{array} \right) + \left(\begin{array}{c} 9 \\ m \end{array} \right)$$

b.
$$\begin{pmatrix} 15 \\ 6 \end{pmatrix} = \begin{pmatrix} 14 \\ 6 \end{pmatrix} + \begin{pmatrix} 14 \\ m \end{pmatrix}$$

Answer a. m = 4 or m = 5 b. m = 5 or m = 9

4. How many entries are in the nth row of Pascal's Triangle?

Answer There are n+1 entries.

5. What is the value of $\begin{pmatrix} 15 \\ 9 \end{pmatrix}$ in Pascal's Triangle? *Hint:* Use the formula for combination numbers.

Answer
$$\begin{pmatrix} 15 \\ 9 \end{pmatrix} = \frac{15!}{9!(15-9)!} = 5,005$$

6. Use the Binomial Theorem to expand each binomial. Hint: For both problems, start by finding $(a+b)^8$.

a.
$$(2x + y)^8$$

b.
$$(2x-3y)^8$$

Answers

a.
$$256x^8 + 1024x^7y + 1792x^6y^2 + 1792x^5y^3 + 1120x^4y^4 + 448x^3y^5 + 112x^2y^6 + 16xy^7 + y^8$$

b.
$$\frac{256x^8 - 3072x^7y + 16,128x^6y^2 - 48,384x^5y^3}{+90,720x^4y^4 - 108,864x^3y^5 + 81,648x^2y^6 - 34,992xy^7 + 6561y^8}$$

- 7. Consider the expansion of $(a+b)^9$.
 - **a.** What is the coefficient of the a^4b^5 term? Can you find this by using combination numbers?

- **b.** What other term or terms share this coefficient?
- **c.** Which terms of this expansion do not share coefficients with any other terms? Why?

d. Now consider the expansion of $(a+b)^{10}$. Which coefficient of this expansion is not repeated?

Answers a. ${}_{9}C_{4} = 126$ b. $a^{5}b^{4}$ c. None. There are 10 terms in the 9th row of Pascal's triangle, so every coefficient is repeated exactly twice. d. ${}_{10}C_{5} = 252$

- **8.** Consider the expansion of $(a+b)^{24}$, but don't actually do it out.
 - **a.** What is the coefficient of the a^3b^{21} term? Find this by using combination numbers, not by finding the 24th row of Pascal's Triangle.
 - **b.** Find the coefficient of the a^7b^{17} term.

c. What is the term with the largest coefficient? What is that coefficient?

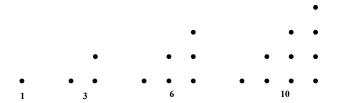
Answers a. 2,024 b. 346,104 c. $_{24}C_{12} = 2,704,156$

- **9.** Now consider the expansion of $(2x + y)^{24}$ (but don't actually do it out).
 - **a.** What is the coefficient of the x^3y^{21} term? *Hint:* Think about the expansion for $(a+b)^{24}$. What do you need to plug in for a and b?

b. Find the coefficient of the x^6y^{18} term.

Answers a.
$$\begin{pmatrix} 24 \\ 3 \end{pmatrix} \cdot 2^3 = 16{,}192$$
 b. $\begin{pmatrix} 24 \\ 6 \end{pmatrix} \cdot 2^6 = 8{,}614{,}144$

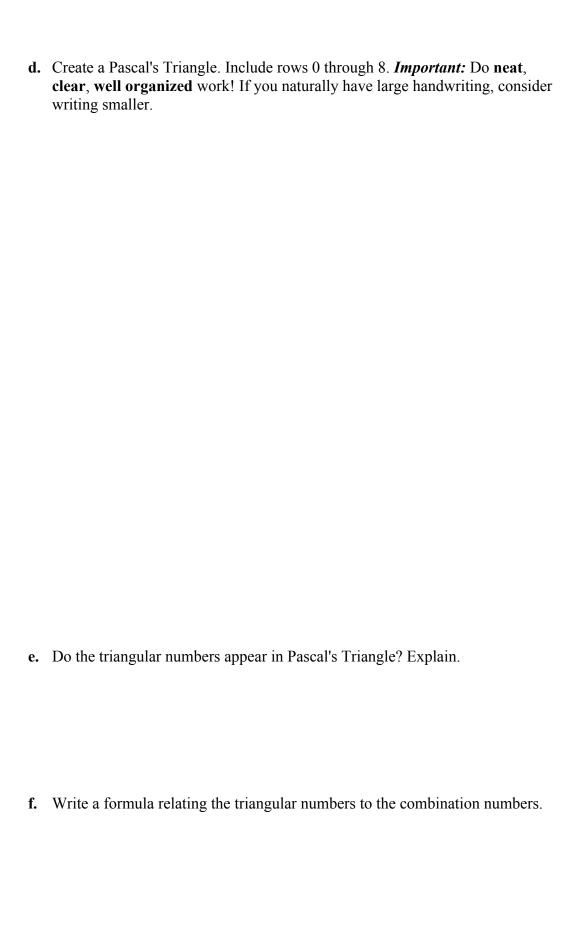
10. Recall the triangular numbers that we introduced earlier in this course. The first four triangular numbers are pictured below.



a. We say write t(1) = 1, t(2) = 3, t(3) = 6, and t(4) = 10. Find the values for the next four triangular numbers.

b. Complete the following formula: $t(n) = \sum_{k=1}^{n} (???)$. (Fill in the question marks.)

c. Find an explicit formula for t(n). Prove it, if you can.



g. Suppose $T(n) = \sum_{k=1}^{n} t(k)$. Find the values of T(1), T(2), T(3), T(4).

h. How are the numbers of T(1), T(2), T(3), T(4), etc. related to Pascal's Triangle? Explain.

i. Write a formula relating the values of T(n) to the combination numbers.

j. Now consider the values for $\sum_{k=1}^{n} T(k)$. How are these related to Pascal's Triangle? Explain.

Some answers a. t(5) = 15, t(6) = 21, t(7) = 28, t(8) = 36 b. $t(n) = \sum_{k=1}^{n} k$

c. $t(n) = \frac{n(n+1)}{2}$ e. The triangular numbers all appear along a "diagonal" of Pascal's Triangle: $t(1) = {}_2C_2$, $t(2) = {}_3C_2$, $t(3) = {}_4C_2$, $t(4) = {}_5C_2$, etc. They also form a "diagonal" on the opposite side of Pascal's Triangle: $t(1) = {}_2C_0$, $t(2) = {}_3C_1$, $t(3) = {}_4C_2$, $t(4) = {}_5C_3$, etc. f. There are two ways to write the formula: $t(n) = {}_{n+1}C_2$ or $t(n) = {}_{n+1}C_{n-1}$ g. T(1) = 1, T(2) = 4, T(3) = 10, T(4) = 20 h. These also form a diagonal of Pascal's Triangle: $T(1) = {}_3C_3$, $T(2) = {}_4C_3$, $T(3) = {}_5C_3$, $T(4) = {}_6C_3$, etc. i. $T(n) = {}_{n+2}C_3$ j. These are the next diagonal in Pascal's Triangle: 1, 5, 15, 35, 70, etc. In general, $\sum_{k=1}^n T(k) = {}_{n+2}C_4$.

11. Optional Challenge How many odd numbers are there on the 10th row of Pascal's Triangle? On the 20th row of Pascal's Triangle? On the 100th row? *Note:* This problem is hard! Start by making a table and look for patterns.