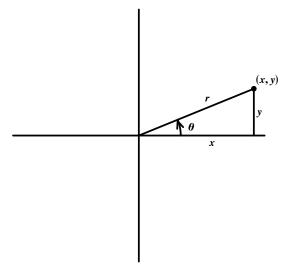
Algebra 2/Pre-Calculus


More Special Angles (Trigonometry, Day 2)

Name

In this handout we will continue using the circular trig definitions (x, y, and r, rather than adjacent, opposite, and hypotenuse).

Definitions: Circular Trigonometry

In order to evaluate trigonometric functions for angles of any size, we will now introduce a new set of definitions based on the idea we developed in the last problem. We begin all angles on the positive x-axis and rotate counterclockwise by θ . This establishes values for x, y, and r. We use these values to define our trig functions in the following way:

$$\cos \theta = \frac{x}{r}$$

$$\sin \theta = \frac{y}{r}$$

$$\tan \theta = \frac{y}{x}$$

$$\cot \theta = \frac{x}{y}$$

Here are some important notes about our new definitions:

- We can choose any positive value for *r*. (Try to use whichever value is most convenient!)
- x and y could be either positive or negative, depending on which quadrant the point is in.
- We always start our angles on the positive x-axis.
- We rotate counterclockwise for positive angles and clockwise for negative angles. (Here's a way to think about this: Positive angles start off by going up and negative angles start off going down.

1.	Find each of the following. Draw a diagram for each problem. Do not use a calculator. <i>Note:</i> Answers are provided at the end of this problem.					
	a.	cos150°	b.	$\sin 30^{\circ}$		
	c.	cos 45°	d.	sin 225°		
	e.	$\sin 240^{\circ}$	f.	sin(-30°)		

g.
$$\cos(-120^{\circ})$$

 $h. \sin 135^{\circ}$

Answers

$$a. \ \ -\frac{\sqrt{3}}{2} \quad \ b. \ \ \tfrac{1}{2} \quad \ c. \ \ \tfrac{1}{\sqrt{2}} = \tfrac{\sqrt{2}}{2} \quad \ d. \ \ -\tfrac{1}{\sqrt{2}} = -\tfrac{\sqrt{2}}{2} \quad \ e. \ \ -\tfrac{\sqrt{3}}{2} \quad \ f. \ \ -\tfrac{1}{2} \quad \ g. \ \ -\tfrac{1}{2} \quad \ h. \ \ \tfrac{1}{\sqrt{2}} = \tfrac{\sqrt{2}}{2}$$

- **2.** Find each of the following. Draw a diagram for each problem. Do not use a calculator. *Note:* Answers are provided at the end of this problem.
 - **a.** $\tan 30^{\circ}$

b. $\tan 45^{\circ}$

 \mathbf{c} . $\tan 150^{\circ}$

d. $tan(-60^{\circ})$

Answers

a.
$$\frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$$
 b. $\frac{1}{1} = 1$ c. $-\frac{1}{\sqrt{3}} = -\frac{\sqrt{3}}{3}$ d. $-\frac{\sqrt{3}}{1} = -\sqrt{3}$

3.	Find each of the following. Draw a diagram for each problem. Do not use a calculator. <i>Note:</i> Answers are provided at the end of this problem.					
	a.	$\sin 90^{\circ}$	b.	cos 90°		
	c.	cos180°	d.	$\sin 0^{\circ}$		
		tan 180°	c	tan 90°		
	e.	tan 180	f.	tan 90		
	g.	$\cos 0^{\circ}$	f.	$tan 0^{\circ}$		

Answers

 $a.\ 1\quad b.\ 0\quad c.\ \text{--}1\quad d.\ 0\quad e.\ 0\quad f.\ Undefined\quad g.\ 1\quad h.\ 0$

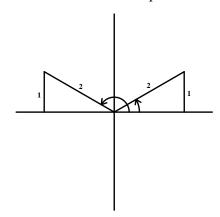
- **4.** Find each of the following. Draw a diagram for each problem. Do not use a calculator. *Note:* Answers are provided at the end of this problem.
 - a. $\sin 390^{\circ}$

b. $\cos 405^{\circ}$

c. $\sin 450^{\circ}$

d. $\tan 450^{\circ}$

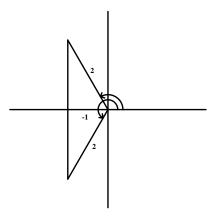
 $e. \sin 690^{\circ}$


 $\mathbf{f.}$ $\tan 855^{\circ}$

Answers

a. $\frac{1}{2}$ b. $\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$ c. 1 d. Undefined e. $-\frac{1}{2}$ f. -1

- 5. Consider the equation $\sin \theta = \frac{1}{2}$. Our goal is to find all solutions to this equation without using our calculators.
 - **a.** Which quadrants could θ be in? *Hint:* What do we know about the value of y? Is y positive or negative?
 - **b.** Since $\sin \theta = \frac{1}{2}$, we can conclude that y is positive. This means that θ must either be in quadrant 1 or quadrant 2. Make a diagram illustrating each of these possibilities. *Note:* Try to draw your diagram as accurately as possible!


c. Here is the diagram you should have drawn in part **b**.

We can see that there are two possible values for θ . What are they?

d. You should have found that $\theta = 30^{\circ}$ or $\theta = 150^{\circ}$. Now use a similar approach to solve the equation $\cos \theta = -\frac{1}{2}$

Solution $\theta = 120^{\circ}$ or $\theta = 240^{\circ}$, as shown in the diagram below.

6. Solve each of the following equations for $0 \le \theta < 360^\circ$. Draw a diagram for each problem. Do not use a calculator. *Note:* Answers are provided at the end of this problem.

$$\mathbf{a.} \quad \sin \theta = \frac{\sqrt{3}}{2}$$

b.
$$\sin \theta = -\frac{\sqrt{2}}{2}$$

$$\mathbf{c.} \quad \cos\theta = \frac{\sqrt{3}}{2}$$

$$\mathbf{d.} \quad \cos\theta = -\frac{1}{2}$$

e.
$$\tan \theta = \frac{1}{\sqrt{3}}$$
 Hint: $\frac{1}{\sqrt{3}} = \frac{-1}{-\sqrt{3}}$

f.
$$\tan \theta = 1$$
 Hint: $1 = \frac{1}{1} = \frac{-1}{-1}$

g.
$$\sin \theta = 1$$

$$\mathbf{h.} \quad \cos\theta = 0$$

i.
$$\cos \theta = -1$$

$$\mathbf{j.} \quad \sin \theta = 0$$

Answers

a. 60° or 120° b. 225° or 315° c. 30° or 330° d. 120° or 240° e. 30° or 210°

f. 45° or 225° g. 90° h. 90° or 270° i. 180° h. 0° or 180°